
CS677: Distributed  and Operating Systems Lecture 24, page 

Today: Coda, xFS

• Distributed File Systems 
• Case Study: Coda File System 

• Brief overview of other file systems 
– xFS 
– Log structured file systems 
– HDFS 
– Object Storage Systems
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Coda Overview
• DFS designed for mobile clients 

– Nice model for mobile clients who are often disconnected 
• Use file cache to make disconnection transparent 
• At home, on the road, away from network connection 

• Coda supplements file cache with user preferences 
– E.g., always keep this file in the cache 
– Supplement with system learning user behavior 

• How to keep cached copies on disjoint hosts 
consistent? 
– In mobile environment, “simultaneous” writes can be 

separated by hours/days/weeks
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File Identifiers

• Each file in Coda belongs to exactly one volume 
– Volume may be replicated across several servers 
– Multiple logical (replicated) volumes map to the same 

physical volume  
– 96 bit file identifier =  32 bit RVID + 64 bit file handle
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Server Replication

• Use replicated writes: read-once write-all 
– Writes are sent to all AVSG (all accessible replicas) 

• How to handle network partitions? 
– Use optimistic strategy for replication  
– Detect conflicts using a Coda version vector   
– Example: [2,2,1] and [1,1,2] is a conflict => manual 

reconciliation
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Disconnected Operation

• The state-transition diagram of a Coda client with respect to a 
volume. 

• Use hoarding to provide file access during disconnection 
– Prefetch all files that may be accessed and cache (hoard) locally 
– If AVSG=0, go to emulation mode and reintegrate upon reconnection
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Transactional Semantics

• Network partition: part of network isolated from rest 
– Allow conflicting operations on replicas across file 

partitions 
– Reconcile upon reconnection 
– Transactional semantics => operations must be serializable 

• Ensure that operations were serializable after thay have 
executed 

– Conflict => force manual reconciliation
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Client Caching
• Cache consistency maintained using callbacks 

– Server tracks all clients that have a copy of the file [provide 
callback promise] 

– Upon modification: send invalidate to clients
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Overview of xFS.
• Key Idea: fully distributed file system   [serverless 

file system] 
– Remove the bottleneck of a centralized system 

• xFS:  x in “xFS”  => no server 
• Designed for high-speed LAN environments
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xFS Summary

• Distributes data storage across disks using software 
RAID and log-based network striping 
– RAID == Redundant Array of Independent Disks 

• Dynamically distribute control processing across all 
servers on a per-file granularity 
– Utilizes serverless management scheme 

• Eliminates central server caching using cooperative 
caching  
– Harvest portions of client memory as a large, global file cache. 
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Array Reliability

•  Reliability of N disks = Reliability of 1 Disk ÷ N 

50,000 Hours ÷ 70 disks = 700 hours

   Disk system MTTF: Drops from 6 years  to 1 month!

• Arrays (without redundancy) too unreliable to be useful!

Hot spares support reconstruction in parallel with 
access: very high media availability can be achieved
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RAID Overview

• Basic idea: files are "striped" across multiple disks 
• Redundancy yields high data availability 

– Availability: service still provided to user, even if some 
components failed 

• Disks will still fail 
• Contents reconstructed from data redundantly stored in 

the array 
– Capacity penalty to store redundant info 
– Bandwidth penalty to update redundant info 

Slides courtesy David Patterson
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Redundant Arrays of Inexpensive Disks  
RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its “mirror”
• Very high availability can be achieved

• Bandwidth sacrifice on write:
• Logical write = two physical writes
• Reads may be optimized

• Most expensive solution: 100% capacity overhead

• (RAID 2 not interesting, so skip…involves Hamming codes)

recovery
group
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Inspiration for RAID 5
• Use parity for redundancy 

– D0 ⨂ D1 ⨂ D2 ⨂ D3 = P 
– If any disk fails, then reconstruct block using parity: 

• e.g., D0 = D1 ⨂ D2 ⨂ D3 ⨂ P 
• RAID 4: all parity blocks stored on the same disk 

– Small writes are still limited by Parity Disk: Write to D0, D5, 
both also write to P disk  

– Parity disk becomes bottleneck

D0 D1 D2 D3 P

D4 D5 D6 PD7
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Redundant Arrays of Inexpensive Disks 
RAID 5: High I/O Rate Interleaved Parity

Independent 
writes
possible 
because of
interleaved 
parity

D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P
.
.

.

.
.
.

.

.
.
.

Disk Columns

Increasing
Logical
Disk 
Addresses

Example: 
write to D0, 
D5 uses 
disks 0, 1, 3, 
4
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xFS uses software RAID
• Two limitations 

– Overhead of parity management hurts performance for small 
writes 

• Ok, if overwriting all N-1 data blocks 
• Otherwise, must read old parity+data blocks to calculate 

new parity 
• Small writes are common in UNIX-like systems 

– Very expensive since hardware RAIDS add special hardware to 
compute parity
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Log-structured FS
• Provide fast writes, simple recovery, flexible file 

location method 
• Key Idea:  buffer writes in memory and commit to 

disk in large, contiguous, fixed-size log segments 
– Complicates reads, since data can be anywhere 
– Use per-file inodes that move to the end of the log to 

handle reads 
– Uses in-memory imap to track mobile inodes 

• Periodically checkpoints imap to disk 
• Enables “roll forward” failure recovery 

• Drawback:  must clean “holes” created by new writes 
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Combine LFS with Software RAID
• The principle of log-based striping in xFS 

– Combines striping and logging
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HDFS
• Hadoop Distributed File System 

– High throughput access to application data 
– Optimized for large data sets (accessed by Hadoop) 

• Goals 
– Fault-tolerant 
– Streaming data access: batch processing rather than interactive 
– Large data sets: scale to hundreds of nodes 
– Simple coherency model: WORM (files don’t change, append ) 
– Move computation to the data when possible
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HDFS Architecture
• Principle: meta data nodes separate from data nodes 
• Data replication: blocks size and replication factor 

configurable
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Google File System
• Master-slave; file divided into chunks (replicated thrice) 
• Atomic writes  
•
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Object Storage Systems
• Use handles (e.g., HTTP) rather than files names 

– Location transparent and location independence 
– Separation of data from metadata 

• No block storage: objects of varying sizes 
• Uses 

– Archival storage   
• can use internal data de-duplication  

– Cloud Storage : Amazon S3 service 
• uses HTTP to put and get objects and delete 
• Bucket: objects belong to bucket/ partitions name space
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