
CS677: Distributed and Operating Systems Lecture 24, page

Today: Coda, xFS

• Distributed File Systems
• Case Study: Coda File System

• Brief overview of other file systems
– xFS
– Log structured file systems
– HDFS
– Object Storage Systems

1

CS677: Distributed and Operating Systems Lecture 24, page

Coda Overview
• DFS designed for mobile clients

– Nice model for mobile clients who are often disconnected
• Use file cache to make disconnection transparent
• At home, on the road, away from network connection

• Coda supplements file cache with user preferences
– E.g., always keep this file in the cache
– Supplement with system learning user behavior

• How to keep cached copies on disjoint hosts
consistent?
– In mobile environment, “simultaneous” writes can be

separated by hours/days/weeks

2

CS677: Distributed and Operating Systems Lecture 24, page

File Identifiers

• Each file in Coda belongs to exactly one volume
– Volume may be replicated across several servers
– Multiple logical (replicated) volumes map to the same

physical volume
– 96 bit file identifier = 32 bit RVID + 64 bit file handle

3

CS677: Distributed and Operating Systems Lecture 24, page

Server Replication

• Use replicated writes: read-once write-all
– Writes are sent to all AVSG (all accessible replicas)

• How to handle network partitions?
– Use optimistic strategy for replication
– Detect conflicts using a Coda version vector
– Example: [2,2,1] and [1,1,2] is a conflict => manual

reconciliation
4

CS677: Distributed and Operating Systems Lecture 24, page

Disconnected Operation

• The state-transition diagram of a Coda client with respect to a
volume.

• Use hoarding to provide file access during disconnection
– Prefetch all files that may be accessed and cache (hoard) locally
– If AVSG=0, go to emulation mode and reintegrate upon reconnection

5

CS677: Distributed and Operating Systems Lecture 24, page

Transactional Semantics

• Network partition: part of network isolated from rest
– Allow conflicting operations on replicas across file

partitions
– Reconcile upon reconnection
– Transactional semantics => operations must be serializable

• Ensure that operations were serializable after thay have
executed

– Conflict => force manual reconciliation

6

CS677: Distributed and Operating Systems Lecture 24, page

Client Caching
• Cache consistency maintained using callbacks

– Server tracks all clients that have a copy of the file [provide
callback promise]

– Upon modification: send invalidate to clients

CS677: Distributed OS 7

CS677: Distributed and Operating Systems Lecture 24, page

Overview of xFS.
• Key Idea: fully distributed file system [serverless

file system]
– Remove the bottleneck of a centralized system

• xFS: x in “xFS” => no server
• Designed for high-speed LAN environments

8

CS677: Distributed and Operating Systems Lecture 24, page

xFS Summary

• Distributes data storage across disks using software
RAID and log-based network striping
– RAID == Redundant Array of Independent Disks

• Dynamically distribute control processing across all
servers on a per-file granularity
– Utilizes serverless management scheme

• Eliminates central server caching using cooperative
caching
– Harvest portions of client memory as a large, global file cache.

9

CS677: Distributed and Operating Systems Lecture 24, page

Array Reliability

• Reliability of N disks = Reliability of 1 Disk ÷ N

50,000 Hours ÷ 70 disks = 700 hours

 Disk system MTTF: Drops from 6 years to 1 month!

• Arrays (without redundancy) too unreliable to be useful!

Hot spares support reconstruction in parallel with
access: very high media availability can be achieved

10

CS677: Distributed and Operating Systems Lecture 24, page

RAID Overview

• Basic idea: files are "striped" across multiple disks
• Redundancy yields high data availability

– Availability: service still provided to user, even if some
components failed

• Disks will still fail
• Contents reconstructed from data redundantly stored in

the array
– Capacity penalty to store redundant info
– Bandwidth penalty to update redundant info

Slides courtesy David Patterson

11

CS677: Distributed and Operating Systems Lecture 24, page

Redundant Arrays of Inexpensive Disks  
RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its “mirror”
• Very high availability can be achieved

• Bandwidth sacrifice on write:
• Logical write = two physical writes
• Reads may be optimized

• Most expensive solution: 100% capacity overhead

• (RAID 2 not interesting, so skip…involves Hamming codes)

recovery
group

12

CS677: Distributed and Operating Systems Lecture 24, page

Inspiration for RAID 5
• Use parity for redundancy

– D0 ⨂ D1 ⨂ D2 ⨂ D3 = P
– If any disk fails, then reconstruct block using parity:

• e.g., D0 = D1 ⨂ D2 ⨂ D3 ⨂ P
• RAID 4: all parity blocks stored on the same disk

– Small writes are still limited by Parity Disk: Write to D0, D5,
both also write to P disk

– Parity disk becomes bottleneck

D0 D1 D2 D3 P

D4 D5 D6 PD7

13

CS677: Distributed and Operating Systems Lecture 24, page

Redundant Arrays of Inexpensive Disks
RAID 5: High I/O Rate Interleaved Parity

Independent
writes
possible
because of
interleaved
parity

D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P
.
.

.

.
.
.

.

.
.
.

Disk Columns

Increasing
Logical
Disk
Addresses

Example:
write to D0,
D5 uses
disks 0, 1, 3,
4

14

CS677: Distributed and Operating Systems Lecture 24, page

xFS uses software RAID
• Two limitations

– Overhead of parity management hurts performance for small
writes

• Ok, if overwriting all N-1 data blocks
• Otherwise, must read old parity+data blocks to calculate

new parity
• Small writes are common in UNIX-like systems

– Very expensive since hardware RAIDS add special hardware to
compute parity

15

CS677: Distributed and Operating Systems Lecture 24, page

Log-structured FS
• Provide fast writes, simple recovery, flexible file

location method
• Key Idea: buffer writes in memory and commit to

disk in large, contiguous, fixed-size log segments
– Complicates reads, since data can be anywhere
– Use per-file inodes that move to the end of the log to

handle reads
– Uses in-memory imap to track mobile inodes

• Periodically checkpoints imap to disk
• Enables “roll forward” failure recovery

• Drawback: must clean “holes” created by new writes

16

CS677: Distributed and Operating Systems Lecture 24, page

Combine LFS with Software RAID
• The principle of log-based striping in xFS

– Combines striping and logging

17

CS677: Distributed and Operating Systems Lecture 24, page

HDFS
• Hadoop Distributed File System

– High throughput access to application data
– Optimized for large data sets (accessed by Hadoop)

• Goals
– Fault-tolerant
– Streaming data access: batch processing rather than interactive
– Large data sets: scale to hundreds of nodes
– Simple coherency model: WORM (files don’t change, append)
– Move computation to the data when possible

18

CS677: Distributed and Operating Systems Lecture 24, page

HDFS Architecture
• Principle: meta data nodes separate from data nodes
• Data replication: blocks size and replication factor

configurable

19

CS677: Distributed and Operating Systems Lecture 24, page

Google File System
• Master-slave; file divided into chunks (replicated thrice)
• Atomic writes
•

20

CS677: Distributed and Operating Systems Lecture 24, page

Object Storage Systems
• Use handles (e.g., HTTP) rather than files names

– Location transparent and location independence
– Separation of data from metadata

• No block storage: objects of varying sizes
• Uses

– Archival storage
• can use internal data de-duplication

– Cloud Storage : Amazon S3 service
• uses HTTP to put and get objects and delete
• Bucket: objects belong to bucket/ partitions name space

21

